

Year 12 Physics Sequence

	Content Re Taught	eference	Essential Knowledge	Assessment	Rationale
oppor essent	tunity to learn new knowle	dge not stu		year 10 and 11 and also have the riculum provides all students with the students to apply this knowledge in	
	errors Students study the essential and transferable disciplinary knowledge through the use of practicals in this	3.1.2 3.1.3	Limitation of physical measurements Estimation of physical quantities Essential knowledge reading for consolidation: • PMT - Measurements and	Daily, Weekly and Monthly Reviews focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson.	Students start with an introductory unit that covers the essential knowledge for practical's and mathematical analysis which will be used in
	first unit. Pupils learn to use the correct units, measuring techniques and mathematical skills required for the KS5 physics curriculum		 their errors Measurements and errors essential knowledge and practice booklet provided 	Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.' End of topic Summative Assessments In each topic of; measurements and	every topic area throughout the KS5 physics curriculum. This topic also builds on the mathematical and practical knowledge from the key stage 4 curriculum in both the sciences and maths curriculums.
	Particles Students study the atom in terms of it's sub atomic particles,	3.2.1	Constituents of the atom Stable and unstable nuclei Particles, antiparticles and photons	errors, particles and forces, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.	curricululiis.

their interactions and
anti-particles. Whilst
the topic itself is new,
prior knowledge of
atomic structure in year
10 and 11 is essential.
Students will further
learn about the
classifications of sub-
atomic particles,
including baryon
number, strangeness,
charge and lepton
number. Students will
learn to apply
conservation laws of
particles, including
quarks
•

Essential knowledge reading for consolidation:

- PMT Particles and radiation
- Particles essential knowledge and practice booklet provided

Forces (mechanics)

Students will learn about different types of forces, how they are measured as either vectors or scalars, wether the forces are balanced or objects experience a resultant force, stability and turning forces.

Scalars of vectors Moments

3.4.1.1

3.4.1.2

Essential knowledge reading for consolidation:

- <u>PMT Mechanics and</u> materials
- Forces essential knowledge and practice booklet provided

Pupils will move on to Particles and quantum physics and Mechanics and materials in half term 1 of year 12.

The topic of particles and quantum phenomena provide students with never before seen concepts which provides students with challenging essential knowledge.

The topic of mechanics builds on prior knowledge from year 10 and 11 physics, as well as using mathematical skills developed in the KS4 maths curriculum via the use of equations and trigonometry. This topic provides essential mathematical knowledge that will be used throughout the rest of the course, in particular the further mechanics topic.

The topic of materials builds on prior learning in year 10 forces where students gain essential knowledge of Hooke's law. This is further developed by applying this essential knowledge with different materials and leads

					students to a brand new area of
HT2	Electromagnetic	3.2.2.1	The photoelectric effect	Formative Assessment:	future science research whilst
	radiation and quantum	3.2.2.2	Collisions of electrons with atoms	Daily, Weekly and Monthly Reviews	linking with the properties of
	phenomena	3.2.2.3	Energy levels and photon	focussing on reviewing material on	materials in chemistry.
		3.2.2.4	emission	Essential Knowledge.	
	Students will learn		Wave-particle duality		The waves topic builds on the
	about the photoelectric			Use of TLaC techniques in lessons to	essential knowledge from the KS4
	effect and how		Essential knowledge reading for	check pupil understanding of essential	waves topics. It also provides
	ionisation and		consolidation:	knowledge during each lesson.	essential knowledge for the
	excitation occurs before		• PMT - Particles and radiation		simple harmonic motion topic
	moving on to gaining		EM radiation and quantum	Pupils are challenged with application	later in year 12.
	essential knowledge		essential knowledge and	questions that 'bring the essential	
	about how particles can		practice booklet provided	knowledge of the topic together.'	Students will also learn about
	behave as waves.				electricity throughout half terms
				End of topic Summative Assessments:	4 and 5, building on prior
				In each topic of; EM radiation and	knowledge in KS3 and KS4. This
	Motion (mechanics)	3.4.1.3	Motion along a straight line	quantum phenomena, motion and	unit provides essential knowledge
		3.4.1.4	Projectile motion	energy and momentum, all pupils are	for the electric fields and
	Students develop	3.4.1.5	Newton's law	assessed on the application of the	capacitance units in year 13 as
	essential knowledge of			essential knowledge that links ideas	well as providing essential skills
	the motion of	3.4.1.6	Essential knowledge reading for	together throughout each topic.	for students wishing to enter a
	displacement, speed,	3.4.1.7	consolidation:		career in electrical engineering.
	velocity and	3.4.1.8	• PMT - Mechanics and	Cumulative assessment 1 – summative	
	acceleration and		<u>materials</u>	test	Students finish the year 12 physic
	applying equations to		 Motion essential knowledge 	A cumulative and summative test taken	curriculum studying circular
	graphical situations and		and practice booklet	in class and covers all topics studied up	motion and SHM. These topics
	projectiles. Students		provided	to this point. Topics covered:	build on prior knowledge of
	will further develop			Measurements and errors	mechanics and waves studied
	knowledge of Newton's			• Particles	earlier in year 12. It also prepare
	laws of motion.			• Forces	students for further study in
	For a second second second second			Electromagnetic radiation	mechanical engineering.
	Energy and momentum		Momentum	Motion	
	(mechanics)		Work, energy and power		

	Students build upon prior essential knowledge of momentum from year 11 to apply the law of conservation of momentum and apply this to impulse within elastic and inelastic collisions. Students then move on to the law of conservation of energy and apply this essential knowledge to power and efficiency.		Essential knowledge reading for consolidation: • PMT - Mechanics and materials • Energy and momentum essential knowledge and practice booklet provided	Questions are a mix of recall and application questions to assess pupils understanding of essential knowledge up to this point	
НТЗ	Materials Students learn about the properties of materials including brittle and ductile materials, then apply this to stress-strain graph cutves to find the Young's modulus of different elastic and plastic materials.	3.4.2.1 3.4.2.2	Bulk properties of solids The Young modulus Essential knowledge reading for consolidation: • PMT - Mechanics and materials • Materials essential knowledge and practice booklet provided	Formative Assessment: Daily, Weekly and Monthly Reviews focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson. Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.'	
	Progressive and stationary waves (start)	3.3.1.1 3.3.1.2	Progressive waves	End of topic Summative Assessments:	

	Students extend their essential knowledge of wave phenomena from year 10 and 11 through greater understanding of the properties, characteristics and applications of travelling and stationary waves.		Longitudinal and transverse waves Essential knowledge reading for consolidation: • PMT - Waves • Progressive and stationary waves essential knowledge and practice booklet provided	In each topic of; materials and progressive and stationary waves, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.	
HT4	Progressive and stationary waves (continued)	3.3.1.3	Principle of superposition of waves and formation of stationary waves Essential knowledge reading for consolidation: • PMT - Waves • Progressive and stationary waves essential knowledge and practice booklet provided	Formative Assessment: Daily, Weekly and Monthly Reviews focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson. Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.'	
	Current electricity Students begin this topic using the essential knowledge of Ohms law and how they apply in ohmic conductors,	3.5.1.1 3.5.1.2 3.5.1.3	Current electricity IV characteristics Resistivity Essential knowledge reading for consolidation: PMT - Electricity	End of topic Summative Assessments: In each topic of; progressive and stationary waves and current electricity, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.	

	semiconductors and non-ohmic conductors such as filament lamps. Students gain greater essential knowledge of resistance and apply this to resistivity and understanding how superconductors work.		Current electricity essential knowledge and practice booklet provided	Cumulative assessment 2 – summative test A cumulative and summative test taken in class and covers all topics studied up to this point. Topics covered: Measurements and errors Particles Forces Electromagnetic radiation Motion Energy and momentum Quantum physics Materials Progressive and stationary waves Questions are a mix of recall and application questions to assess pupils understanding of essential knowledge up to this point
НТ5	Refraction, diffraction and interference Students further develop essential knowledge of the applications of wave phenomena to include refraction, diffraction, superposition and interference.	3.3.2.1 3.3.2.2 3.3.2.3	Interference Diffraction Refraction at a plane surface Essential knowledge reading for consolidation: • PMT - Waves • Refraction, diffraction and interference essential knowledge and practice booklet provided	Formative Assessment: Daily, Weekly and Monthly Reviews focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson. Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.'

Electric circuits Students learn to calculate resistance in both series and parallel circuits, then apply Kirchoff's laws for current and potential difference. Students move on to learn about potential dividers before finishing the topic on EMF and internal resistance.	3.5.1.4 3.5.1.5 3.5.1.6	Circuits Potential divider EMF and internal resistance Essential knowledge reading for consolidation: • PMT - Electricity • Electric circuits essential knowledge and practice booklet provided	End of topic Summative Assessments: In each topic of; refraction diffraction and interference, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.
Periodic motion	3.6.1.1 3.6.1.2	Circular motion Simple harmonic motion	Formative Assessment: Daily, Weekly and Monthly Reviews
Students learn to use radians as a measure of angles as well as using angular velocity to calculate centripetal acceleration and force. Students will further develop their understanding of angular displacement and velocity in SHM, studying mass-spring systems and simple	3.6.1.3 3.6.1.4	Simple harmonic systems Forced vibrations and resonance Essential knowledge reading for consolidation: PMT - Further mechanics Periodic motion essential knowledge and practice booklet provided	focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson. Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.' End of topic Summative Assessments:

pendulums before	In each topic of; periodic motion, all
finishing the final topic	pupils are assessed on the application
of year 12 on resonance	of the essential knowledge that links
and damping.	ideas together throughout each topic.
	Cumulative assessment 3 – summative
	test
	A cumulative and summative test taken
	in class and covers all topics studied in
	year 12
	Questions are a mix of recall and
	application questions to assess pupils
	understanding of essential knowledge
	and tested with AS Level Physics paper
	1 and 2 taken.