

Year 13 Physics Sequence

Content Reference Essential Knowledge Assessment Rationale Taught	
---	--

	YEAR 13						
HT1	Thermal physics The thermal physics topic allows the thermal properties of materials, the properties and nature of ideal gases, and the molecular kinetic theory to be studied in depth. Gravitational fields	3.6.2.1 3.6.2.2 3.6.2.3 3.7.2.1 3.7.2.2 3.7.2.3 3.7.2.4	YEAR 1 Thermal energy transfer Ideal gases Molecular kinetic theory Essential knowledge reading for consolidation: • Thermal physics - PMT • Thermal physics essential knowledge and practice booklet provided in class Newton's law of gravitation Gravitational field strength Gravitational potential Orbits of planets and satellites	3 Formative Assessment: Daily, Weekly and Monthly Reviews focussing on reviewing material on Essential Knowledge. Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson. Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.' End of topic Summative Assessments: In each topic of; thermal physics, gravitational fields, all pupils are	In year 13, students utilise the essential knowledge from year 12 to complete 7 new units as well as the optional unit; astrophysics. Thermal physics builds upon essential knowledge taught in the KS4 topic – the particle model of matter. In the following 4 topics of 'fields,' many ideas from mechanics and electricity from earlier in the course support this and are further developed. The ideas of gravitation, electrostatics and magnetic field theory are developed within the topics to emphasise their unification. In the gravitational fields topic,		
	In this topic, pupils learn about Newton's law of gravitation, gravitational field	3.7.2.4	Gravitational potential Orbits of planets and satellites <i>Essential knowledge reading for</i> <i>consolidation:</i>	gravitational fields, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.	topics to emphasise their unification. In the gravitational fields topic, students build upon essential knowledge of gravitational potential energy, force and weight from year 10 energy 3 and forces 3. This unit		

	strength and potential and finish the topic learning about the orbits of planets and satellites.		 Fields and their consequences - <u>PMT</u> Gravitational fields essential knowledge and practice booklet provided in class 		also provides essential knowledge for the subsequent topic of electric fields. Electric fields follow gravitational fields as the topics interlink closely in terms of concepts as well as providing the essential knowledge to apply to
HT2	Electric fields Students study in depth how electric fields compare and contrast to gravitational field and study their applications.	3.7.3.1 3.7.3.2 3.7.3.3	Coulombs law Electric field strength Electric potential Essential knowledge reading for consolidation: • Fields and their consequences - PMT • Electric fields essential knowledge and practice booklet provided in class	Formative Assessment:Daily, Weekly and MonthlyReviews focussing on reviewingmaterial on Essential Knowledge.Use of TLaC techniques in lessonsto check pupil understanding ofessential knowledge during eachlesson.Pupils are challenged withapplication questions that 'bringthe essential knowledge of the	capacitance. Magnetic fields is the final fields topic and builds on essential knowledge from year 11 magnetism 3 as well as applying some concepts from gravitational and electric fields. Radioactivity build on essential knowledge from the particles 3 topic in year 10 where students are introduced to radioactivity. It also builds on the particle physics in year
	Capacitance This topic is an important application of electric fields. Students study in depth knowledge of the capacitors, such as how it stores charge and how this is	3.7.4.1 3.7.4.2 3.7.4.3 3.7.4.4	Capacitance Parallel place capacitor Energy stored by a capacitor Capacitor charge and discharge Essential knowledge reading for consolidation: • Fields and their consequences - <u>PMT</u> • Capacitance essential knowledge and practice booklet provided in class	topic together.' End of topic Summative Assessments: In each topic of; electric fields, capacitance, magnetic fields, all pupils are assessed on the application of the essential knowledge that links ideas together throughout each topic.	 12. This unit also provides essential knowledge for the nuclear physics topic that follows. We end the KS5 curriculum with an application of the measurements and errors topic that was first visited in year 12. This allows students to apply their essential disciplinary knowledge from the 12 required practicals delivered throughout the KS5 curriculum and bring it all together to

	applied in the			Cumulative assessment 4 –	link substantive knowledge and
	modern world.			summative test	disciplinary knowledge.
				A cumulative and summative test	
	Magnetic fields	3.7.5.1	Magnetic flux density	taken in class and covers all topics	
		3.7.5.2	Moving charges in a magnetic field	studied up to this point. Topics	
	Students study	3.7.5.3	Magnetic flux and flux linkage	covered:	
	how magnetic	3.7.5.4	Electromagnetic induction	• All year 12 curriculum content	
	fields are	3.7.5.5	Alternating currents	Thermal physics	
	generated and	3.7.5.6	Transformers	Gravitational fields	
	apply to different			• Electric fields and capacitance	
	situations,		Essential knowledge reading for	Magnetic fields	
	including		consolidation:	Questions are a mix of recall and	
	faraday's law and		• Fields and their consequences -	application questions to assess	
	lens's law.		<u>PMT</u>	pupils understanding of essential	
	Students finish		Magnetic fields essential	knowledge up to this point	
	the topic with		knowledge and practice booklet		
	magnetic		provided in class		
	applications of				
	electricity.				
шт2	Padioactivity	2 2 1 1	Putherford scattering	Formative Assessment:	
	Radioactivity	3812	Types of radiation	Daily Weekly and Monthly	
	In this tonic	3813	Radioactive decay	Beviews focussing on reviewing	
	students go	3814	Nuclear instability	material on Essential Knowledge	
	further in denth	3815	Nuclear radius	material on Essential knowledge.	
	with their study of	5.0.1.5		Use of TLaC techniques in lessons	
	narticles and		Essential knowledge reading for	to check pupil understanding of	
	radiation to link		consolidation:	essential knowledge during each	
	the properties of		Nuclear physics - PMT	lesson.	
	the nucleus, the		Radioactivity essential		
	characteristics of		knowledge and practice booklet	Pupils are challenged with	
	the nucleus and		provided in class	application questions that 'bring	

the properties of			the essential knowledge of the	
unstable nuclei.			topic together.'	
		Astronomical telescopes		
Telescopes and	3.9.1.1	Reflecting telescopes	End of topic Summative	
Classification of	3.9.1.2	Single dish telescopes	Assessments:	
stars	3.9.1.3	Advantages of large diameter	In each topic of; radioactivity,	
	3.9.1.4	telescopes	telescopes and classification of	
Fundamental			stars, all pupils are assessed on	
physical principles	3.9.2.1	Essential knowledge reading for	the application of the essential	
are applied to the	3.9.2.2	consolidation:	knowledge that links ideas	
study and	3.9.2.3	• Astrophysics - PMT	together throughout each topic.	
, interpretation of	3.9.2.4	Telescopes essential knowledge		
the Universe.	3.9.2.5	and practice booklet provided in		
Students gain	3.9.2.6	class		
deeper insight				
into the behaviour		Classification by luminosity		
of objects at great		Absolute magnitude, M		
distances from		Classification by temperature, black-		
Earth and		body radiation		
discover the ways		stellar spectral classes		
in which		The Hertzsprung-Russell (HR) diagram		
information from		Supernovae, neutron stars and black		
these objects can		holes		
be gathered. The				
underlying		Essential knowledge reading for		
physical principles		consolidation:		
of the devices		• Astrophysics - PMT		
used are covered		• Classification of stars essential		
and some		knowledge and practice booklet		
indication is given		provided in class		
of the new		-		
information				
gained by the use				

	of radio				
	astronomy.				
HT4	Nuclear physics	3.8.1.6	Mass and energy	Formative Assessment:	
		3.8.1.7	Induced fission	Daily, Weekly and Monthly	
	Students study	3.8.1.8	Safety aspects	Reviews focussing on reviewing	
	the production of			material on Essential Knowledge.	
	nuclear power		Essential knowledge reading for		
	through the		consolidation:	Use of TLaC techniques in lessons	
	characteristics of		• Nuclear physics - PMT	to check pupil understanding of	
	the nucleus, the		• Nuclear physics essential	essential knowledge during each	
	properties of		knowledge and practice booklet	lesson.	
	unstable nuclei,		provided in class		
	and the link			Pupils are challenged with	
	between energy			application questions that 'bring	
	and mass.			the essential knowledge of the	
	Students become			topic together.'	
	aware of the				
	physics that			End of topic Summative	
	underpins nuclear			Assessments:	
	energy production			In each topic of; nuclear physics	
	and also of the			and cosmology, all pupils are	
	impact that it can			assessed on the application of the	
	have on society.			essential knowledge that links	
				ideas together throughout each	
				topic.	
	Cosmology			Cumulative assessment 5 –	
		3.9.3.1	Doppler effect	summative test	
	Students gain	3.9.3.2	Hubbles law	A cumulative and summative test	
	essential	3.9.3.3	Quasars	taken in class and covers all topics	
	knowledge of the	3.9.3.4	Detection of exoplanets	studied in the KS5 physics	

	Universe and how it began. Students will also study how technological advances have allowed for the discovery of exoplanets via new ways of gathering information by astonomers.		Essential knowledge reading for consolidation: • <u>Astrophysics - PMT</u> • Cosmology essential knowledge and practice booklet provided in class	curriculum. Questions are a mix of recall and application questions to assess pupils understanding of essential knowledge up to this point	
HT5	Measurements and errors part 2 Students study how measurement techniques link to the required practicals that have taken place during the KS5 physics curriculum. This topic allows students to apply their essential disciplinary knowledge and	3.1.1 3.1.2 3.1.3	 Use of SI units and their prefixes Limitation of physical measurements Estimation of physical quantities Essential knowledge reading for consolidation: Practical skills - PMT Measurements and errors essential knowledge and practice booklet provided in class 	Formative Assessment:Daily, Weekly and MonthlyReviews focussing on reviewing material on Essential Knowledge.Use of TLaC techniques in lessons to check pupil understanding of essential knowledge during each lesson.Pupils are challenged with application questions that 'bring the essential knowledge of the topic together.'End of topic Summative Assessments: In the topic of measurements and	

	knowledge studied throughout year 12 and 13.			on the application of the essential knowledge that links ideas together from the required practicals throughout the entire course and apply this to measurement techniques and their errors.	
HT5 and HT6	Identification of strengths and weaknesses of the curriculum to plan re-teach and fill gaps.	All	Using question level analysis and data driven instruction, staff and pupils identify weaknesses in disciplinary knowledge (science skills) and substantive knowledge (topic content) and deliver re-teaching to improve overall essential knowledge of the KS5 physics curriculum.	Assessment is taken in class and covers all topics. Questions are a mix of recall and application questions to assess pupils understanding of essential knowledge covering the whole key stage 5 physics curriculum.	