REVISION LIST - COMMUNICABLE DISEASE

<table>
<thead>
<tr>
<th>I CAN</th>
<th>Nearly there</th>
<th>Got it....</th>
</tr>
</thead>
<tbody>
<tr>
<td>- explain how diseases caused by viruses, bacteria, protists and fungi are spread in animals and plants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- explain how the spread of diseases can be reduced or prevented.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathogens are microorganisms that cause infectious disease.

Pathogens may be viruses, bacteria, protists or fungi. They may infect plants or animals and can be spread by direct contact, by water or by air.

Bacteria and viruses may **reproduce rapidly** inside the body.

Bacteria may produce poisons (**toxins**) that damage tissues and make us feel ill.

Viruses live and reproduce inside cells, causing cell damage.

I can describe **3 viral diseases** - measles, HIV, Tobacco mosaic virus.

- **Measles** is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. For this reason most young children are **vaccinated** against measles. The measles virus is spread by inhalation of droplets from sneezes and coughs.

- **HIV** initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body’s immune cells. Late stage HIV infection, or AIDS, occurs when the body’s immune system becomes so badly damaged it can no longer deal with other infections or cancers. HIV is spread by sexual contact or exchange of **body fluids** such as blood which occurs when drug users share needles.

- **Tobacco mosaic virus (TMV)** is a widespread plant pathogen affecting many species of plants including tomatoes. It gives a distinctive ‘mosaic’ pattern of discolouration on the leaves which affects the growth of the plant due to **lack of photosynthesis**.

I can describe **2 bacterial diseases** - Salmonella and Gonorrhoea.

- **Salmonella** food poisoning is spread by bacteria ingested in food, or on food prepared in unhygienic conditions. In the UK, poultry are vaccinated against Salmonella to control the spread. Fever, abdominal cramps, vomiting and diarrhoea are caused by the bacteria and the toxins they secrete.

- **Gonorrhoea** is a sexually transmitted disease (STD) with symptoms of a thick yellow or green discharge from the vagina or penis and pain on urinating. It is caused by a bacterium and was easily treated with the antibiotic penicillin until many resistant strains appeared. Gonorrhoea is spread by sexual contact. The spread can be controlled by treatment with antibiotics or the use of a **barrier method of contraception** such as a condom.

I can describe **1 fungal disease** -

- **Rose black spot** is a fungal disease where purple or black spots develop on leaves, which often turn yellow and drop early. It affects the growth of the plant as photosynthesis is reduced. It is spread in the environment by water or wind. Rose black spot can be treated by using **fungicides** and/or removing and destroying the affected leaves.

I can describe **1 protist** disease

The pathogens that cause **malaria** are protists.

The malarial protist has a life cycle that includes the mosquito. Malaria causes recurrent episodes of fever and can be fatal. The spread of malaria is controlled by preventing the **vectors**, mosquitoes, from breeding and by using mosquito nets to avoid being bitten.
I can describe the **non-specific defence systems** of the human body against pathogens, including the:

- skin as a barrier
- nose- mucus/hairs
- trachea and bronchi- mucus ciliated epithilium
- stomach.- hydrochloric acid

I can explain the role of the immune system in the defence against disease.

If a pathogen enters the body the immune system tries to destroy the pathogen.

White blood cells help to defend against pathogens by:

- **phagocytosis**
- **antibody** production
- **antitoxin** production.

I can explain how **vaccination** will prevent illness in an individual, and how the spread of pathogens can be reduced by immunising a large proportion of the population.- herd immunity

Vaccination involves introducing small quantities of **dead or inactive** forms of a pathogen into the body to stimulate the **white blood cells** to produce antibodies. If the same pathogen re-enters the body the white blood cells respond quickly to produce the correct antibodies, preventing infection.

I can explain the use of **antibiotics** and other medicines in treating disease.

Antibiotics, such as **penicillin**, are medicines that help to cure bacterial disease by killing infective bacteria inside the body. It is important that specific bacteria should be treated by specific antibiotics.

The use of antibiotics has greatly reduced deaths from infectious bacterial diseases. However, the emergence of strains resistant to antibiotics is of great concern.

Antibiotics cannot kill viral pathogens.

Painkillers and other medicines are used to treat the **symptoms** of disease but do not kill pathogens.

It is difficult to develop drugs that kill viruses without also damaging the body’s tissues.

I can describe the process of discovery and development of potential new medicines, including preclinical and clinical testing.

Traditionally drugs were extracted from plants and microorganisms.

- The heart drug **digitalis** originates from foxgloves.
- The painkiller **aspirin** originates from willow.
- **Penicillin** was discovered by Alexander Fleming from the *Penicillium* mould.

Most new drugs are synthesised by chemists in the pharmaceutical industry. However, the starting point may still be a chemical extracted from a plant.

New medical drugs have to be tested and trialled before being used to check that they are safe and effective.

New drugs are extensively tested for **toxicity, efficacy** and **dose**.

Preclinical testing is done in a laboratory using cells, tissues and live animals.

Clinical trials use healthy volunteers and patients.

- Very low doses of the drug are given at the start of the clinical trial.
- If the drug is found to be safe, further clinical trials are carried out to find the optimum dose for the drug.
- In **double blind trials**, some patients are given a **placebo**.

I can describe how **monoclonal antibodies** are produced.

Monoclonal antibodies are produced from a single clone of cells. The antibodies are **specific** to one binding site on one protein **antigen** and so are able to target a specific chemical or specific cells in the body.
They are produced by stimulating **mouse lymphocytes** to make a particular antibody. The lymphocytes are combined with a particular kind of tumour cell to make a cell called a **hybridoma** cell. The hybridoma cell can both divide and make the antibody. Single hybridoma cells are **cloned** to produce many identical cells that all produce the same antibody. A large amount of the antibody can be collected and **purified**.

I can describe some of the ways in which monoclonal antibodies can be used. Some examples include:
- for diagnosis such as in pregnancy tests
- in laboratories to measure the levels of hormones and other chemicals in blood, or to detect pathogens
- in research to locate or identify specific molecules in a cell or tissue by binding to them with a fluorescent dye
- to treat some diseases: for cancer the monoclonal antibody can be bound to a radioactive substance, a toxic drug or a chemical which stops cells growing and dividing. It delivers the substance to the cancer cells without harming other cells in the body.

Monoclonal antibodies create more side effects than expected. They are not yet as widely used as everyone hoped when they were first developed.

Plant diseases

Plant diseases can be detected by:
- stunted growth
- spots on leaves
- areas of decay (rot)
- growths
- malformed stems or leaves
- discolouration
- the presence of pests.

Identification can be made by:
- reference to a gardening manual or website
- taking infected plants to a laboratory to identify the pathogen
- using testing kits that contain monoclonal antibodies.

Plants can be infected by a range of viral, bacterial and fungal pathogens as well as by insects.

I can describe 3 plant diseases- tobacco mosaic virus as a viral disease, black spot as a fungal disease and aphids as insects.

Plants can be damaged by a range of ion deficiency conditions:
- stunted growth caused by nitrate deficiency
- chlorosis caused by magnesium deficiency.

Knowledge of ions is limited to nitrate ions needed for protein synthesis and therefore growth, and magnesium ions needed to make chlorophyll.